Using GConf as an Example of How to Create an Userspace Object Manager

James Carter

National Security Agency

Abstract

GConf is a configuration system for GNOME. It does not provide adequate security controls over the configuration
data that it manages, which could allow the security goals of the system to be violated. There are various strategies
that can be used to provide security controls over an application under SELinux. One strategy, which is a natural
part of implementing the Flask architecture on Linux, is to turn the program into a userspace object manager. This
paper discusses the general process of providing SELinux controls over a program and the specific steps taken to

provide SELinux controls over GConf.

1. Background

Any program without adequate security controls over it
could be used to violate the system's security goals.
SELinux [1] is a Linux implementation of Flask [2],
which is a flexible mandatory access control security
architecture, and can be used to enforce system and ap-
plication security goals. There are several different
strategies for doing this; this paper discuses some of
these strategies and how they were applied to GConf.
GConf was chosen because it manages configuration
data which could potentially be used to compromise the
system's security goals.

1.1. SELinux

The Flask architecture consists of a security server, ob-
ject managers, and access vector caches (AVC). One of
the primary design goals of the Flask architecture is to
separate the security policy from the mechanism used to
enforce it. This is accomplished by having the security
server encapsulate the security policy logic and make
all access control decisions and by having the object
managers bind security labels to their objects, request
labeling and access decisions from the security server,
and enforce those decisions. An AVC caches security
decisions for one or more object managers to minimize
the performance overhead of obtaining an access deci-
sion from the security server.

In SELinux, the security server, along with an AVC, is
a separate kernel subsystem [3]. The other kernel sub-
systems have been turned into object managers by
adding a way to bind security labels to their objects,
adding Linux Security Module (LSM) hooks to bind se-

curity labels to their objects and to query the security
server for labeling and access decisions, and adding the
appropriate logic to handle access denials.

SELinux provides an administratively controlled policy,
controls all processes and objects, and makes decisions
based on all security-relevant information. SELinux
controls more than just files and capabilities: It also
controls sockets, interprocess communication, shared
memory, and processes. Processes are labeled based on
the user, role, clearance, and function of the program.
This allows a process to run in different domains de-
pending on what user is running it or what data it is pro-
cessing. SELinux labels the actual processes and objects
to ensure that the security characteristics of the object
are uniquely and reliably identified.

1.2. GConf

GConf [4,5,6] is a configuration system for the
GNOME desktop. Although used only by GNOME,
GConf is not dependent on GNOME and could be used
by other desktops. GConf stores configuration data for
programs and provides change notification to programs.
Change notification is an important feature, because it
allows an application to receive notification when a
configuration value changes. This allows an application
to reflect the actual configuration at all times without
having to periodically read its configuration data.

1.2.1. Architecture

GConf consists of a set of configuration sources, a
client library, and a per-user configuration server. The
client and server communicate through ORBit [10],

which is a version of CORBA. See Figure 1: The
GConf Architecture.

Client Library Client Library

ORBit

v

Configuration

; Server

= Backend

Configuration l
Configuration

Source

Figure 1: The GConf Architecture

—

Backend [«

2

Configuration
Source

Source

Configuration sources store configuration data and
metadata. Configuration data are stored as key-value
pairs. Keys look like filesystem paths, but, even
though every component except the last is called a di-
rectory, they are not. Configuration values can be ele-
ments, pairs of elements of the same or different types,
or lists of elements with the same type. Elements can
have a type of string, boolean, integer, or floating point.
Configuration metadata are called schemas. Schemas
contain metadata about key-value pairs such as the ex-
pected type, the default value, and a description. They
are stored in their own namespace which starts with
/schema.

A backend is used to access a configuration source.
There are currently XML and LDAP backends in
GConf, but others could be used [11]. The XML back-
end supports both a directory tree structure in the
filesystem, with key directories being actual directories,
and a single XML file, with key directories being sec-
tions specified with the dir tag.

The client library provides the interface for a program
to access the configuration sources either through the
configuration server or directly through a backened. It
caches configuration values from previous queries, al-
lows a specific set of configuration sources to be speci-
fied and used, and, in conjunction with the configura-
tion server, notifies the client when the value of a regis-
tered key changes.

The configuration server, gconfd, is a per-user daemon
that accesses the configuration sources through the ap-
propriate backend and presents a unified set of configu-
ration data to the client. It also notifies the client library
of all clients effected when the value of a key changes.
The configuration sources used by default are specified
by the GConf configuration, which also designates the
backend to use and whether the source is read-only or
read-write. The configuration server also allows a
client to specify the specific set of configuration sources
that should be used by it when acting for the client.

The order the configuration sources are used by the
configuration server is important. The configuration
server will read configuration data from the first source
from which it can read the data. It will write data to the
first source that is writable, but, even then, only if it
couldn't read it from an earlier source. Since only the
configuration source in the user's home directory can be
written by the user, any changes made by the user are
stored in it and only effects that user. The configuration
sources listed earlier cannot be changed by users, so the
values contained in them must be used by the user.

ORBiIt is the version of CORBA used on Linux [10]. An
interface is created using the Interface Definition Lan-
guage (IDL), which creates a client stub and server
skeleton when compiled. An instance of the interface is
created by calling the interface's initialization function.
Each instance created has a different ORBit object ref-
erence associated with it. The ORBit object reference
can be advertised externally with a Interoperable Object
Resource (IOR) string. The ORBit object reference is
used to invoke the interface instance's methods. The
Object Request Broker (ORB) passes all requests to the
appropriate interface instance.

There are three ORBIt interfaces used in GConf. The
configuration server creates the ConfigDatabase and
ConfigServer interfaces. The ConfigDatabase interface
is used by the client to access the configuration sources.
The configuration server creates a separate instance of
the ConfigDatabase interface for each set of configura-
tion sources used. The ConfigServer interface is used
by the client to get a reference to a ConfigDatabase in-
stance for a specific set of configuration sources. The
client creates the ConfigListener interface. The Con-
figListener interface is used by the server to notify the
client of a change in a directory that has been regis-
tered.

1.2.2. Operation

When the client wishes to perform an operation on the
configuration sources, it calls the appropriate client li-
brary function and passes the key. The client library
checks the cache for the value, if appropriate for the de-
sired function, and checks the key for validity. If the
configuration server is not being used, then the configu-
ration sources are accessed directly through the appro-
priate backend. If it is, the reference to the Con-
figServer instance is retrieved and used to get the refer-
ence to the appropriate ConfigDatabase instance from
the server through ORBit. If the ConfigServer instance
does not exist, then the configuration server is started.
With the ConfigDatabase object reference, the appropri-
ate interface function is called and the request is passed
through ORB:it to the configuration server. The config-
uration server checks the key's validity and then per-
forms the desired operation on the sources that are asso-
ciated with the GConfDatabase instance used by the
client. For a query, if the configuration server does not
find the key in any source and the client specified that
the default value could be used, the default value from
the schema will be retrieved.

The client registers to receive a notification by first reg-
istering the key and a callback function for a client-side
notification and then registering the key's directory for a
server-side notification. The client library will consoli-
date server-side registrations to minimize the number of
server-side notifications registered on the server. The
server will return the identification number used to
track the server-side notification, and the client will use
this number later to identify the notification being re-
ferred to by the server.

After any operation that changes a configuration value,
the configuration server builds a list of notifications to
make by going through its tree of listeners and adding
the notifications registered for each directory from the
root directory to the changed key. For each notifica-
tion, the key, the new value, and the identification num-
ber for the notification are sent to the client using the
reference to the ConfigListener instance. The identifi-
cation number is used by the client libraries to find
which client registered the server-side notification. The
client's cache is then checked for the new value. If it is
there, then the client has already been notified of the
change and no further action is required. If not, then
the new value is cached and the key is added to the
client's list of pending notifications. Later, when
GNOME gets to it, the pending notification will be re-
moved from the list and the callback registered for the
client-side notification will be called.

1.2.3 Why GConf Needs to be Secured

The configuration data stored on a system can have im-
portant consequences for the security of a system. Any
application with access to the configuration data can
read or modify it. There is no separation between the
configuration data of two programs, and no way to pro-
vide it.

A few examples relevant to security[9]:

+ GNOME has a GConf setting to determine
whether or not to allow remote access.

e There are gnome-vfs settings to save a user-
name, password, and proxy-server name.

e There are many settings which store the name
of a program to run for a menu selection.

The ORBIt interfaces are also important. Any process
that can read the ConfigServer IOR can get the refer-
ence to a ConfigDatabase instance and access the clien-
t's configuration sources. Any process that can read the
ConfigListener IOR can send a fake notification to the
client. The client would cache the value provided by
the notification, and return that value when the key is
queried in the future.

2. Providing Security Controls over a Pro-
gram

For any new application it must be determined if it
could provide the means to compromise the security
goals of the system. On a system using SELinux to pro-
vide security, the overall security goals are specified by
the security policy and enforced by SELinux. All pro-
grams on a system running SELinux are controlled by
the SELinux policy. In many cases, adequate control
over a program is achieved by running the program in
the domain of the process that runs it.

If there are not adequate controls over the program,
then either the program must not be run, the security
goals of the system must be reduced to allow the pro-
gram to run, or security controls must be added. The
first two options do not involve any changes to the se-
curity controls of the system and will not be discussed
further.

There are four strategies for adding security controls
over a program. These strategies, which can be used by
themselves or together, are as follows:

+ Add SELinux policy for the program,
e Add additional or finer-grained controls to
SELinux,

» Re-architect the program to make use of exist-
ing SELinux controls, or

* Modify the program to become an userspace
object manager.

2.1. Add SELinux Policy

Adding SELinux policy does not require modification
of the program and is the least obtrusive method of
adding security controls over a program. In some cases,
all that may be required is to run the application in the
same domain as a similar program which already has a
security policy written for it. An example of this would
be netscape and epiphany, which are web browsers, us-
ing the mozilla policy. Otherwise, the flexibility of
SELinux allows a custom policy to be written for the
application. A custom policy for a program involves
specifying the security label the process will run in, la-
beling the security-relevant objects such as files and
IPC, and writing rules to allow the appropriate interac-
tions between the process and these objects, the process
and other objects, and other processes and these objects.

2.2. Add Additional Features to SELinux

If merely adding policy does not address the security
concerns of running that application, then other strate-
gies must be pursued. Another strategy is to add addi-
tional or finer-grained SELinux kernel controls. An ex-
ample of this was the creation of netlink socket classes
and additional permissions to provide fine-grained con-
trol over netlink objects. This allows an object to be
able to send data to the audit subsystem without being
able to write firewall configuration data.

SELinux is meant to have comprehensive controls over
kernel objects, so new kernel controls shouldn't be re-
quired often. If they are, then new policy must be writ-
ten to take advantage of the new controls.

2.3. Re-Architect the Program

If the first two strategies do not work, then more inva-
sive modifications are needed to control the application.
Programs can be re-architected to make better use of the
existing SELinux controls. One way this could be done
is to decompose an application into a small process that
does a few privileged operations and a larger process
that handles the normal operation. The small process
runs in its own domain and is given the necessary per-
missions to do the privileged operations. The larger pro-
cess runs in a domain with less privilege, so if it is com-
promised it cannot compromise the security goals of the

system. This is a good strategy to use even if SELinux
is not being used.

An application doesn't always have to be modified to
better fit into a SELinux system, sometimes the way it
is used can be changed. For instance, instead of running
one copy of a program, multiple copies can be run in
different domains.

Sometimes more radical modifications are necessary.
The Replacement of FAM with Gamin was an example
of this. FAM was a system-wide daemon that moni-
tored the system for file changes. It needed to be able
to read the entire filesystem and communicate with ev-
ery process. This made it a huge communication chan-
nel. Gamin was structured to be a per-session daemon
requiring a more reasonable set of permissions. It only
provided a communication channel between a user's
programs.'

2.4. Create an Userspace Object Manager

Sometimes re-architecting an application is not an op-
tion. In this case, the flask architecture can be extended
to the application making it an userspace object manag-
er over its objects. SELinux provides object managers
for kernel objects, but new object managers are needed
for any object not controlled by the kernel. Creating
userspace object managers is a natural part of imple-
menting the Flask architecture on Linux. The X server
and D-Bus are examples of userspace object managers.
To create an userspace object manager, the program
must be modified to bind security labels to the objects
that it controls, request labeling and access decisions
from the appropriate security server, and to enforce the
decisions returned by the security server. A userspace
object manager is only trusted to control its objects. It
does not become trusted in all of its operations and it is
still controlled by the system's security policy for it.

There are seven steps in creating an userspace object
manager:

« Identify the objects in greater detail,

« Provide a way to uniquely and reliably label
the objects,

e Add access checks and labeling requests where
needed to control the objects,

« Make the subject's label available at the access
checks,

1Gamin has been replaced by a client library that registers to receive
an inotify from the kernel when a given directory or file has

changed. Now there is no daemon and no communications channel.

* Add an access vector cache (AVC) to cache
the access decisions of the security server,

+ Create new SELinux policy classes and per-
missions as needed, and

* Create SELinux policy to control the objects.

SELinux supports the creation of userspace object man-
agers by providing an access vector cache in the lib-
selinux library that can be used by userspace object
managers. Access decisions are then requested through
the AVC. The userspace AVC receives netlink mes-
sages from the kernel so that it can flush its cache upon
a policy load and modify its behavior to reflect the cur-
rent enforcing mode.

3. Securing GConf

GConf was selected as an example of securing a securi-
ty critical application using these strategies. When
looking to secure GConf, the following objects must be
secured: the configuration sources, the key-value pairs,
and the ORBit IORs.

All of the objects, except the key-value pairs have some
protection through normal Linux file controls. The de-
fault configuration sources are either in /etc/gconf
and cannot be modified by any user or in the user's
home directory and cannot be modified by another user.

Likewise, the ConfigServer IOR, stored in
/tmp/gconfd-USER/lock/ior, and the Con-
figListener IOR, stored in ~/.gconfd/saved-

state, can only be accessed or modified by the user.
3.1. Add SELinux Policy

Although configuration data stored in /etc/gconf
cannot be modified, the configuration data stored in the
user's home directory can be modified by any process
run by the user. A custom SELinux security policy for
GConf can be used to prevent any program other then
the configuration server from accessing or modifying
the configuration data of the user.

A SELinux policy was created for GConf that runs the
configuration server in its own domain and only allows
it to access or modify the user's configuration data. Un-
fortunately, any process run by the user must be able to
use the configuration server to manage its configuration
data, so any process can access and modify all of the
user's configuration data through it. To allow a process
to access and modify some configuration data, but deny
access to others, there must be a way to assign different
security labels to different configuration data.

There is no guaranteed granularity at which the config-
uration data can be labeled. The single file XML back-
end can only have different security labels at the config-
uration source level, since each configuration source is
a single file. This is not an adequate granularity to pro-
vide the desired security controls. The XML directory
tree backend can be labeled at the directory level, be-
cause the key directories are actual fileystem directo-
ries. It cannot be labeled on the individual key-value
pair level, because all of the key-value pairs in the
same directory are in the same file. Having the config-
uration data labeled at the directory level might be ade-
quate to provide the desired security controls, but it
would prevent the use of any other backend.

If other backends are going to be supported, then adding
SELinux policy alone is not going to provide the de-
sired security controls over the configuration data.

3.2. Add Additional Features to SELinux

There is no need, however, to modify the SELinux ker-
nel controls to accommodate GConf. The configuration
data of GConf is only visible to the SELinux object
managers in the kernel at the granularity in which it is
stored in the filesystem, and SELinux currently controls
the filesystem objects at the appropriate level.

3.3. Re-Architect the Program

There are several ways in which GConf could be re-ar-
chitected to make better use of the existing SELinux
controls.

A client could be re-architected to use GConf in a dif-
ferent way. Since GConf allows a client to specify the
configuration source to be used, a client could have a
private configuration source. Even with the single file
XML backend, its configuration source could have its
own security label that prevents any other process from
accessing or modifying it. But this would require every
program that used GConf to be modified and any tool
for centrally managing configuration data would have
to know about all of the private configuration sources.

Another way that GConf could be re-architected is by
removing the functionality that allows the client to di-
rectly access the configuration sources. This would be
of limited value, though, since it would not prevent a
process from accessing and modifying any of the user's
configuration data through the configuration server.
SELinux policy would still be necessary to control ac-
cess to the configuration sources.

The advantages of these ways of re-architecting do not
offset their disadvantages. The only strategy that re-
mains is to create an userspace object manager.

3.4. Create an Userspace Object Manager

By using only the previous strategies, some progress
has been made on securing GConf, but the configura-
tion data is still not controlled adequately. The reason
is clear, the configuration data is only visible at the
right granularity to the configuration server. The con-
figuration server must be made into an userspace object
manager.

3.4.1. Identifying the Objects in Greater
Detail

The important objects have already been identified.
The configuration sources, ConfigServer IOR, and Con-
figListener IOR are filesystem objects and can be pro-
tected with normal SELinux controls. The key-value
pairs are the objects that GConf is going to control as an
userspace object manager.

3.4.2. Labeling the Configuration Data

The first step is to label the configuration data and to
persistently store the labels. One approach would be to
modify the configuration source backends to store the
security label with the data. This has the advantage of
keeping the label with the object, which is preferred,
but it has several disadvantages. First, GConf can use
another configuration system as a configuration source
[11]. If the security labels are stored in the configura-
tion sources, then all of the configuration source back-
ends must be made to store security labels. Another
problem is that a schema can be used by more than one
key. If this is the case, there could be two conflicting
labels that need to be stored in the schema. A copy of
the schema could be made, but now the copy has to be
kept consistent with the original schema.

The method that was chosen to store the security labels
was to create a separate namespace for the security la-
bels and to store them as normal GConf value strings in
that namespace. All security contexts are stored in the
/selinux namespace. A security label for a key is
found by looking up the value of a new key created by
concatenating /selinux and the original key. The se-
curity labels can either be accessed directly in the
/selinux namespace with the normal GConf query
and set functions or by using new get and set security
context operations. The GConf query and set functions
will use the get and set security context operations on

the server for operations involving security labels. Both
the old and new security labels are used to determine if
a set security label operation will be allowed. The ad-
vantages of this method are that the security label only
needs to be stored once and the same security label is
used no matter where the key's value is found. There is
a danger in using this method, however. If the client is
allowed to specify the configuration sources used, it
could add a configuration source with the wrong securi-
ty labels before the configuration source with the real
security labels and gain access to any key that it wants.
To counter this threat, the security label is always cho-
sen from the default configuration sources. It would
also be very easy to have a separate set of configuration
sources just for security labels.

These two methods could be combined. To do this, op-
tional backend methods for getting and setting a securi-
ty context would be created. If a configuration source
backend implemented these methods, then the configu-
ration server would use those methods to get a security
label if it was also going to get the value from that
source. The only reason this method was not used was
that recent changes in the GConf XML backend causes
an unknown XML tag to return an error. This makes a
configuration source modified to store security labels
with a new XML tag incompatible with the normal
XML backend.

3.4.3. Adding Labeling Requests and Access
Checks

An access decision should be made before the state of
the configuration data could be changed. Since the con-
figuration sources store the configuration data, the ac-
cess checks are, in most cases, placed right before an
operation on the configuration sources. This allows the
security label of a key to be retrieved, an access or la-
beling decision requested, and the decision then en-
forced without the operation being performed unless al-
lowed. If the key does not have a security label, then a
default security label is used. Following the example of
D-Bus and the X server, the configuration server's secu-
rity context was used as the default security label.

There is one case where the access decision had to be
done sooner. When registering a server-side notifica-
tion, the configuration server adds the notification to its
listener tree before calling the function that would pass
the request to the configuration sources' backends. The
access check was placed so it is done before the notifi-
cation would be added, and it is not added unless the
client process had access to the directory of the notifica-
tion request.

There are two cases where the access decision had to be
requested after the configuration sources were accessed.
The first case is when the configuration sources are
queried for all of the configuration data in a directory --
keys and values, not just keys. Either the request is ac-
complished by getting a list of all of the keys in the di-
rectory and then looking up the keys for which access is
allowed individually, or the list of keys and values are
retrieved first and then the key-value pairs for which ac-
cess is not allowed are removed from the list. The latter
option was chosen. The second case is similar and the
same approach is used. It occurs when the configura-
tion sources are queried for all of the directories in a
given directory. After the list has been returned, the di-
rectories for which access is denied are removed.

A labeling request is made when a new configuration
key-value pair is created. There is no separate create
operation in GConf; if the key is not found in the con-
figuration sources on a set operation, then the key-value
pair is created. In addition, if the key does not exist on
a query operation, then NULL is returned. The only
way to determine if a key exists is to query for the key's
metadata; if the key exists, a non-NULL value will be
returned. Modifications were made to the set operation
so that the following occurs. If a security context or
metadata exists, then the set operation is not considered
to be creating the value. In this case, a permission
check is performed for setting the value and the value is
set if the client is allowed. If the key-value pair is being
created, then the security label of the key's parent is
queried and a permission check is made to determine if
the client can create a key-value pair in the parent direc-
tory. A labeling request is then made using the parent
directory's security label and the security label of the re-
questing process to determine the security label of the
new key-value pair. If the parent directory doesn't ex-
ist, then queries are made until an existing ancestor di-
rectory is found; at the very least / will exist. When an
existing directory is found, a permission check is per-
formed to determine if a new key can be created in it
and then the security label for that key is requested.
With the new security label, the permission check and
label request can now be done on the next lower direc-
tory. This continues down to the desired key. If per-
mission was granted for all of the checks and the set op-
eration was successful, then all of the new directories
and the new key-value pair are labeled with the new se-
curity labels.

3.4.4. Making the Client's Security Context
Available

In order to make the access checks, not only is the secu-
rity label of the key needed, but also the security con-
text of the process making the request. The best place
for the configuration server to get this information is
from the kernel. Unfortunately, in the case of GConf,
since the client process and the configuration server
communicate through ORBit it is not possible for the
kernel to provide the configuration server with the
client's security label.

If the server cannot get the security label of the client
from the kernel, then the next best option would be to
get it from a process that it trusts. In the case of GConf,
ORBit is the one process that could provide the security
label of the client to the server. Unfortunately, modify-
ing ORB:it to provide this data would require modifying
the IDL compilers. This would not be a trivial task.

Since there have been some plans mentioned about
moving GConf to D-Bus [8,9], and since D-Bus would
be much easier to modify to pass the desired security, it
was decided to not to attempt any modifications of OR-
Bit.

In the meantime, the current work is left in the undesir-
able position of trusting the client library to pass the
client process's context to the server over ORBit.

3.4.5. Add an Access Vector Cache (AVC)

The Access Vector Cache (AVC) is provided by the li-
brary libselinux. The configuration server was modi-
fied to initialized the AVC when it starts. GConf spe-
cific memory allocation, logging, and audit callback
functions were provided to the AVC.

3.4.6. Create new SELinux policy class and
permissions

A new security class was created named gconf with per-
missions of get_value, set_value, create_value,
remove_value, get_meta, set_meta, relabel_from, and
relabel_to. See Table 1: GConf Operations and Class
Permissions.

3.4.7. Create SELinux policy to control the
objects

Now that the configuration data can be labeled and ac-
cess decisions requested and enforced, policy can be
written to take advantage of these controls to properly
secure the configuration data. Sensitive keys must be
identified along with what processes should be allowed
to access or modify them. Processes that need to have

different access to the configuration data need to run in
different domains. Since most user programs currently
run in one domain, this could be a lot of work.

No policy has been written at this time other then what
was needed to test the mechanisms for proper function.

GConf Operations | gconf Class Permissions

query_value query_value

query_metainfo oet_meta

set_value set_value, create_value

hll_entries query_value

ll_subdirs query_value

unset_value remove_value

dir_exists query_value
remove_dir set_value
set_schema Set_meta

hdd_listener query_value

oet_security_context |get_meta

set_security_context [relabel_from, relabel_to

Table 1: GConf Operations and Class Permissions
4. Conclusions and Future Work

It has been shown how various strategies can be used
to provide security controls over a program. The cre-
ation of an userspace object manager was discussed in
the greatest detail and GConf was used as an example
of how an userpace object manager could be created.

More work needs to be done to secure GConf. The
client libraries cannot be trusted to provide the proper
security context, so either another approach must be
found to pass the security context of the client process
or ORBit will have to be modified to do it itself. A
more thorough analysis must be done to determine
which user processes need access to what configuration
data. Finally, the processes run by a user must be sepa-
rated into different domains so that their access to con-
figuration data can be controlled.

Acknowledgments

I would like to thank Peter Loscocco for his many sug-
gestions, and Steven Smalley and the SELinux Sympo-
sium reviewers for their comments on earlier versions.

References

[1] P. Loscocco, S. Smalley, "Meeting Critical Security
Objectives with Security-Enhanced Linux," In Proceed-
ings of the 2001 Ottawa Linux Symposium, July 2001.

[2] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D.
Anderson, "The Flask Security Architecture: System

Support for Diverse Security Policies," In Proceedings
of the 8th USENIX Security Symposium , August 1999.

[3] P. Loscocco, S. Smalley, "Integrating Flexible Sup-
port for Security Policies into the Linux Operating Sys-
tem," In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, June 2001.

[4] GConf Configuration System, Available at
http://www.gnome.org/projects/gconf/index.html

[5] GConf Reference Manual, Available at http://devel-
oper.gnome.org/doc/AP1/2.0/gconf/

[6] H. Pennington, "GConf: Manageable User Prefer-
ences", In Proceeedings of the 2002 Ottawa Linux Sym-
posium, July 2002.

[7]1 GConf Reference Documentation, Available at
http://www.gnome.org/~bmsmith/gconf-docs/C/in-
dex.html

[8] http://developer.imendio.com/projects/misc/gcont-
dbus

[9] http://pvanhoof.be/wiki/index.php/Temporary_loca-
tion_for_D-Conf_specs

[10] D. Ruiz, M. Lacag, D. Binnema, "GNOME &
CORBA", Available at
http://developer.gnome.org/doc/guides/corba/html/book
1.html

[11] Avi Alkalay, email to Fedora-Devel list, 31 March
2006.

