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Abstract 

Security-enhanced Linux incorporates a strong, flex­
ible mandatory access control architecture into 
Linux. It provides a mechanism to enforce the sep­
aration of information based on confidentiality and 
integrity requirements. This allows threats of tam­
pering and bypassing of application security mech­
anisms to be addressed and enables the confine­
ment of damage that can be caused by malicious 
or flawed applications. Using the system’s type 
enforcement and role-based access control abstrac­
tions, it is possible to configure the system to meet a 
wide range of security needs. This paper describes 
how Security-enhanced Linux was used to meet a 
number of general-purpose system security objec­
tives. 

1 Introduction 

Operating system security is fundamental to the se­
curity of every computing system because operating 
systems are a critical point of failure for the entire 
system. Unfortunately, attempts to secure com­
puter systems continue to be based on the flawed 
assumption that adequate security can be provided 
in applications with the existing security mecha­
nisms of mainstream operating systems. The reality 
is that secure applications require secure operating 
systems, and any effort to provide system security 
which ignores this premise is doomed to fail. The 
integration of Mandatory Access Control (MAC) is 
a necessary step in the complex task of building a 
completely secure operating system. It would signif­
icantly improve system security and enable protec­
tion from many vulnerabilities that plague systems 
today [14]. 

A general purpose MAC architecture needs the abil­
ity to enforce an administratively-set security pol-

icy over all subjects and objects in the system, 
basing decisions on labels containing a variety of 
security-relevant information. When properly im­
plemented, it enables a system to adequately de-
fend itself and offers critical support for applica­
tion security by protecting against the tampering 
with, and bypassing of, secured applications. It al­
lows critical processing pipelines to be established 
and guaranteed. MAC provides strong separation 
of applications that permits the safe execution of 
untrustworthy applications. Its ability to limit the 
privileges associated with executing processes lim­
its the scope of potential damage that can result 
from the exploitation of vulnerabilities in applica­
tions and system services. MAC enables informa­
tion to be protected from legitimate users with lim­
ited authorization as well as from authorized users 
who have unwittingly executed malicious applica­
tions. The ability for the system to do these types 
of things is necessary before the construction of se­
cure systems will be possible. 

It is impossible to obtain the benefits derived from 
MAC with existing Discretionary Access Controls 
(DAC) like those currently found in Unix systems. 
It is not adequate to base access decisions only on 
user identity and ownership. It must be possible to 
consider additional security-relevant criteria such as 
the role of the user, the function and trustworthiness 
of programs, or the sensitivity or integrity of the 
data. As long as users have complete discretion over 
objects, it will not be possible to control data flows 
or enforce a system-wide security policy. 

Protection against malicious code is not possible us­
ing existing DAC mechanisms because every pro-
gram executed by the user inherits all of the privi­
leges associated with that user. Malicious programs 
are free to change the permissions associated with 
all of the user’s objects, as well as disclose or al­
ter the objects themselves. This problem is ex-
acerbated by the fact that only two categories of 
users are supported, completely trusted administra-



tors and completely untrusted ordinary users. Many 
system services and privileged programs must run 
with coarse-grained privileges that far exceed their 
requirements. A flaw in any one of these programs 
can be exploited to obtain complete system access. 

Traditional MAC mechanisms have typically been 
too limiting to serve as a general security solu­
tion. They have tended to be too tightly coupled 
to a multi-level security (MLS) [5] policy which 
bases its access decisions on clearances for subjects 
and classifications for objects. This traditional ap­
proach is too limiting to meet many security require­
ments [6, 7, 8]. It provides poor support for data and 
application integrity, separation of duty, and least 
privilege requirements. It requires special trusted 
subjects that act outside of the access control model. 
It fails to tightly control the relationship between a 
subject and the code it executes. Thus, traditional 
MAC systems have limited ability to offer protec­
tion based on the function and trustworthiness of 
the code, to correctly manage permissions required 
for execution, and to minimize the likelihood of ma­
licious code execution. 

The Flask Architecture [17] was created as an at-
tempt to serve as a general architecture for MAC. 
An important design goal was to provide flexible 
support for security policies, since no single MAC 
policy model is likely to satisfy everyone’s security 
requirements. This goal was achieved by cleanly 
separating the security policy logic from the enforce­
ment mechanism. Care was taken to ensure that 
well-defined policy interfaces were specified that 
could support the widest set of useful security poli­
cies. The architecture provides support for policy 
changes and allows security policies to be expressed 
naturally in terms that make sense to the particu­
lar security policy that is implemented. In addition, 
with the Flask architecture, the enforcement of the 
security policy can be transparent to applications 
because it is possible to define default security be­
havior. 

Security-Enhanced Linux [13, 12], or SELinux for 
short, is an application of the Flask architecture in 
the Linux operating system. MAC has been inte­
grated into the major subsystems of the Linux ker­
nel, including fine-grained controls for operations 
on processes, files, and sockets. The security pol-
icy decision logic has been encapsulated into a new 
kernel component called the Security Server (SS) 
which makes labeling, access and polyinstantiation 
decisions in response to policy-independent requests 

that have been placed throughout the kernel. This 
architecture enables the kernel to enforce policy de­
cisions without needing access to the details of the 
policy. 

The SS implemented for SELinux was designed 
with a particular model of MAC selected to ad-
dress the limitations of traditional MAC implemen­
tations. Because of the flexibility of the Flask ar­
chitecture, this model is easily modified, or even re-
placed, to support other models as well. In general, 
this will not be necessary because the SS released 
with SELinux is capable of supporting many secu­
rity policies that meet a wide variety of security 
objectives. It achieves significant policy flexibility 
using configuration files to define security policies 
that are easily tailored to meet specific installation 
needs. 

The remainder of this paper is a discussion of how 
SELinux with its current SS implementation can be 
used to dramatically increase the level of security 
possible in a Linux system. It begins with a de­
scription of the model of security that the current 
SS implements. It is then shown how SELinux was 
used to meet some general security objectives. The 
paper ends with a short discussion of related work 
and some concluding remarks. 

2 Security Server 

The Flask architecture is sufficiently general to sup-
port many models of mandatory access control. A 
particular model must be chosen for every imple­
mentation of the security server. Once selected, a 
security server is constructed that makes all security 
relevant decisions in the context of that model. The 
security server is cleanly separated from the rest of 
the kernel, hidden behind a well-defined interface. 
This section describes the security server that was 
implemented for SELinux. 

In choosing the security model for a security server 
implementation, care should be taken to ensure that 
it is sufficiently expressive to meet whatever security 
objectives are expected. The flexibility of the Flask 
architecture allows the security server to be mod­
ified, or even replaced, to alter the supported se­
curity model to meet additional requirements. The 
complete encapsulation of the security policy logic 
within the security server makes this possible with-



out any impact on the rest of the system. 

The content and format of labels used in the sys­
tem depend on the particular security model im­
plemented by the security server. Security deci­
sions within the security server are based on security 
contexts which represent security labels. A secu­
rity context is a policy independent data type that 
can be handled by different parts of the system but 
should only be interpreted by the security server. 
It contains all of the security attributes associated 
with a particular labeled object that are relevant to 
the policy decision logic. 

Security contexts are usually not bound directly to 
objects. A second policy-independent data type 
called a security identifier (SID) is bound to each 
object that requires a label. SIDs are nonglobal and 
nonpersistent opaque objects that are mapped to se­
curity contexts. This mapping is created at run time 
and maintained by the security server. When an ob­
ject is created, the security server decides which SID 
to use as a label. SIDs associated with objects are 
passed into the security server and used as the basis 
for security decisions. 

The mandatory access controls of SELinux are im­
plemented as permission checks that have been in­
serted at control points throughout the Linux ker­
nel. Approximately 140 fine-grained permissions, 
grouped into 28 object classes, have been defined 
to allow the control of nearly every system oper­
ation. Examples of permissions are the transition 
and signal permissions in the process class or create 
and write permissions in the file class. Permission 
checks are made between a source SID and a target 
SID for a particular permission in some object class. 
Usually, but not always, these are the SIDs associ­
ated with a calling process and some object, like a 
file, that is being accessed. To respond to permis­
sion checks, the security server’s policy logic uses the 
security relevant attributes contained in the security 
contexts associated with the source and target SIDs 
to determine if a permission can be granted. 

2.1 Security Server Model of SELinux 

The implementation of the example security server 
for SELinux required that a concrete security model 
be selected. A combination of Identity-based Ac­
cess Control (IBAC), Role-based Access Control 
(RBAC), and Type Enforcement (TE) was chosen. 

As previously mentioned, SElinux does not depend 
on this model; it is straightforward to replace it with 
some other choice. It was chosen as the example 
because it is sufficiently general to support many 
security objectives found in real-world security. 

The SELinux security server maintains security con-
texts with three relevant security attributes, an 
identity, a role, and a type. It determines which 
combinations of values for these attributes can be 
combined into security contexts. It uses each com­
ponent of the security context to compute a portion 
of the access decisions. 

There is an identity associated with every process on 
the system. Changes to it are rigorously controlled 
and the policy configuration only allows certain pro-
grams to change the identity (currently login and 
crond). When a user logs on and presents his cre­
dentials, the identity portion of the security context 
related to his login shell will reflect the user’s real 
identity. SELinux identities are orthogonal to Linux 
UIDs. Except when specified in the policy, when-
ever the UID of a process is changed, its SELinux 
identity remains unchanged; when a new program is 
executed, the identity component will be preserved. 
In this way, all access control decisions can be based 
the correct identity. 

The actions of any particular user are restricted by 
the RBAC policy. Users are assigned a set of roles 
that they may assume. The transition between roles 
is controlled by the policy. Although not strictly 
necessary, the security policy has been configured 
to limit role transitions to occur only as a result of 
running programs that require user authentication. 
This was done to ensure that roles changes can only 
occur with explicit user consent and not from exe­
cuting some malicious program. 

Roles are used to express allowable user actions. 
The RBAC policy used in SELinux differs from 
that described in [10] in that it defines allowable 
user actions for a particular role using the TE pol-
icy. Whereas a typical RBAC policy would directly 
specify permissions granted to roles, the SElinux 
RBAC policy specifies domains that can be entered 
by roles, and defers the assignment of permissions to 
the TE configuration. Although this form of RBAC 
does not offer additional security over a strict TE 
policy, it does allow the TE policy to be more easily 
managed using the higher-level concept of roles. 

The TE policy is used to express the fine-grained 



access controls. Each object in the system is as-
signed a type. An access matrix is defined where 
each element of the matrix determines the allow-
able accesses between a pair of types. In SELinux, 
the accesses are expressed in terms of permissions 
granted for each subject and object class that were 
defined for the kernel control points. All permis­
sions must be explicitly granted. 

This form of TE differs from that defined in [6] in 
that there is no distinction made between types and 
domains. Domains are treated just as any other 
type. Domains are simply types assigned to pro­
cesses. Because of this, types used as domains can 
also be used as a type of a related object, e.g. the 
type of its procfs entries. The term domain is of-
ten still used for convenience even though the secu­
rity server does not internally distinguish them from 
types. By reducing domains and types to a single 
type abstraction, a single table can be used to ex-
press the TE policy based on type pairs rather than 
separate tables for subject interactions and object 
accesses. This also allows inter-object relationships 
to be defined in the policy. 

This form of TE is also distinct in that the permis­
sions are grouped by object class to facilitate ex-
pressing a matrix where so many more permissions 
are defined than typically is the case. The class con­
cept allows permissions to be defined for each kind 
of object based on the services for that object, and 
it allows the policy to distinguish different kinds of 
objects, e.g. granting different permissions to a de-
vice file than to a regular file or to a raw socket than 
to a TCP socket. This enables SELinux to provide 
finer-grained permissions than what is typically ex­
pected when using TE. 

TE offers many benefits over the traditional ap­
proach to MAC. The TE access matrix provides 
a clean separation of the policy and enforcement 
mechanisms. It is capable of supporting many poli­
cies. It is useful for expressing integrity, separation, 
containment, and invocation policies. No trusted 
subjects that can violate the policy are necessary. 
Because every process can be assigned a domain, ev­
ery process can be controlled using exactly the same 
mechanism. Fine-grained permissions can be as-
signed to programs limiting privileged programs to 
the minimal permissions required to complete their 
task. Lastly, TE allows the relationship between a 
subject and its executable to be tightly controlled, 
enabling protection based on the function and trust-
worthiness of code and offering protection against 

the execution of malicious code. 

2.2 Configuring Security Policies 

The specific policy that is enforced by the kernel 
is dictated by security policy configuration files. 
These text-based configuration files allow the secu­
rity server implementation to support many secu­
rity policies. They account for a significant part 
of security policy flexibility possible with SELinux. 
Once a security policy specification is completed, it 
is straightforward to customize that policy to meet 
the specific needs of different installations. It is pos­
sible to maintain different security policies that ad-
dress completely different security objectives with 
just one base system. 

The configuration files are written using a simple 
language developed for the security server. The con-
figuration is checked and compiled into a binary rep­
resentation that is loaded into the security server at 
boot time. It may also be reloaded at runtime as 
controlled by the policy. 

The TE configuration file defines an extensible set 
of types. Using the allow statement, allowable per-
missions between pairs of types are specified for each 
object class. 

allow type_1 type_2:class { perm_1 ... perm_n }; 

The TE configuration file defines automatic transi­
tions between types when programs of certain types 
are executed. Such transitions ensure that sys­
tem processes and certain programs are placed into 
their own separate domains automatically when ex­
ecuted. It also defines default labels for files created 
by programs of certain types in certain types of di­
rectories to ensure that files are created with the 
right types. Both are done using the type transition 
statement. 

type_transition type_1 type_2: file 
default_file_type; 

type_transition type_1 type_2: process 
default_process_domain; 

The RBAC configuration file defines an extensible 
set of roles. Each process has an associated role. 



The configuration file specifies the set of types that 
may be entered by processes executing in a given 
role. The role statement is used to define the roles. 

role rolename types { type_1 ... type_n }; 

As users execute programs, transitions to other roles 
may, according to the policy configuration, auto­
matically occur to support changes in privilege. A 
role transition rule specifies the default role of a 
transformed process based on its prior role and the 
type of the program executable. If no rule is speci­
fied, then the default role of a process is the same as 
its role prior to the execve call. The role transition 
statement is used to define the roles. 

role_transition current_role program_type new_role; 

Although the language allows role transitions to oc­
cur on program execution, the SELinux configura­
tion never uses this functionality. Instead it uses 
domain transitions for changes in privileges during 
a session. Roles are only allowed to change on login 
or by executing the newrole program which causes 
a user authentication. Unlike the TE policy, the 
RBAC policy has no entrypoint controls to control 
the transition into roles. Care must be taken when 
granting this capability. Role changes tend to in­
volve significant changes in privileges (e.g user be-
coming system administrator) whereas domain tran­
sitions tend to be finer-grained changes. 

The IBAC configuration file defines each user recog­
nized by the system security policy. Each user has 
a set of roles that may be entered by processes with 
the user’s identity. This is specified with the user 
statement. 

user username roles { role_1 ... role_n }; 

There are two other configuration files available to 
further specify a security policy. They are the as­
sert.te and constraints files. The first allows the 
specification of TE assertions that must hold true 
for the expressed policy to be valid. The second 
uses boolean expressions to express restrictions on 
users or roles. Both are useful tools to construct 
security policies. 

Lastly, the operation of SELinux depends not only 
on the security policy configuration but also on the 

labels of objects in the file system. New objects are 
labeled when they are created. When the object 
is moved onto persistent storage, a persistent SID 
(PSID) is stored with that object. The PSID rep­
resents a security context, and a mapping between 
them is stored within the file system. PSIDs are 
mapped into SIDs when the kernel accesses the ob­
ject. See [13, 17] for a more complete discussion on 
PSIDS. 

When existing file systems are brought into 
SELinux, labels must be assigned. The file contexts 
configuration file specifies security contexts for files 
based on pathname regular expressions. The setfiles 
utility program reads this configuration and sets the 
security contexts on each file accordingly. When set-
files is run, the system stores the proper PSID with 
each file and updates the security context mapping. 
In this way, the security policy can depend on the 
file system labels. 

3 Meeting Security Objectives 

The SELinux release includes an example of a 
general-purpose security policy configuration de-
signed to meet a number of security objectives as 
an example of how a system may be secured [16]. 
The example RBAC configuration is very simple. 
All system processes run in the system r role. Two 
roles are currently defined for users, user r for ordi­
nary users and sysadm r for system administrators. 

Most of the policy is specified through the exam­
ple TE configuration. Separate domains are de-
fined for various system processes and authorized 
for the system r role. Each user role has an asso­
ciated initial login domain, the user t domain for 
the user r role and the sysadm t domain for the 
sysadm r role. This initial login domain is associ­
ated with the user’s initial login shell. As the user 
executes programs, domain transitions occur auto­
matically as needed to change privileges. Different 
sets of domains are authorized for each of the user 
roles. 

The rest of this section describes how the TE con-
figuration meets a specific set of security objectives. 
It provides and explains detailed examples of the 
configuration to address each objective. In some 
cases, macros in the actual configuration have been 
expanded for the excerpts in this section to reveal 



greater detail about the configuration. Addition-
ally, in some cases, the full expansion of a macro 
has been pruned for brevity. 

3.1 Limiting Raw Access to Data 

Access controls for individual processes and files are 
of little use if an attacker can directly access raw 
data. Hence, the policy configuration must carefully 
limit raw access to data. The example configuration 
defines a set of types for objects that can be used 
to access raw data. Access to these types is only 
granted to a small set of privileged domains, and 
entry to these domains is carefully controlled. 

Since fsck and related utilities must access the raw 
disk, a fsadm t domain is defined for such utilities. 
A fsadm exec t type is assigned to the program files 
for these utilities. The following excerpt shows a 
portion of the configuration relevant to this domain: 

allow fsadm_t fsadm_exec_t:process 
{ entrypoint execute }; 

allow fsadm_t fixed_disk_device_t:blk_file 
{ read write }; 

allow initrc_t fsadm_t:process transition; 
allow sysadm_t fsadm_t:process transition; 

The first statement in this excerpt allows the 
fsadm t domain to be entered by executing a pro-
gram labeled with the fsadm exec t type. The 
second statement allows the fsadm t domain to 
read and write block special files with the 
fixed disk device t type. The third statement allows 
the rc scripts to transition to this domain (e.g. so 
that fsck can be run automatically during initial­
ization). The last statement allows an authorized 
system administrator to transition to this domain 
(e.g. so that fsck can be explicitly run by an ad­
ministrator). Access to the raw disk device is con-
trolled both with respect to the particular program 
and to the context in which the program is called. 

Since klogd must access the kernel memory devices, 
a klogd t domain is defined for this daemon. A 
klogd exec t type is assigned to the program file for 
the daemon. The following excerpt shows a portion 
of the configuration relevant to this domain: 

allow klogd_t klogd_exec_t:process 
{ entrypoint execute }; 

allow klogd_t memory_device_t:chr_file read; 
allow initrc_t klogd_t:process transition; 

This excerpt is very similar to the excerpt for 
fsadm t. The klogd t domain can only be entered 
by executing a program labeled with the klogd exec t 
type. The klogd t domain can read character spe­
cial files with the memory device t type. The rc 
scripts can transition to the klogd t domain when 
the daemon is executed. 

3.2 Protecting Kernel Integrity 

A second goal of the example policy configuration is 
to prevent attackers from tampering with the ker­
nel. An example of how the configuration protects 
the integrity of the kernel can be seen through its 
protections on the /boot files. Most of the /boot 
files are labeled with a boot t type and can only be 
modified by an administrator. Since certain files in 
/boot are automatically updated during initializa­
tion, a separate boot runtime t type is defined for 
such files, and the domain for rc scripts is autho­
rized to update these files. The following excerpt 
shows a portion of the configuration for these boot 
files: 

allow initrc_t boot_t:dir 
{ read search add_name remove_name }; 

allow initrc_t boot_runtime_t:file 
{ create write unlink }; 

type_transition initrc_t boot_t:file boot_runtime_t; 

The first statement allows the rc scripts to mod­
ify the /boot directory. The individual controls 
over each file ensure that this does not allow the 
rc scripts to remove or rename the existing files in 
/boot in order to replace them. The second state­
ment allows the scripts to create or delete a file with 
the boot runtime t type. The last statement causes 
files created in /boot by the scripts to automatically 
default to the boot runtime t type. 

A second example of how the policy configuration 
protects the integrity of the kernel can be seen in 
its handling of kernel modules. Distinct types are 
assigned to the module utilities and module object 
files to prevent unauthorized modification. The fol­
lowing excerpt shows a portion of the configuration 
for controlling the ability to insert kernel modules 
into a running kernel: 

allow insmod_t insmod_exec_t:process 
{ entrypoint execute }; 

allow insmod_t self:capability sys_module; 
allow sysadm_t insmod_t:process transition; 



The first statement allows the insmod t domain to 
be entered by executing a program with the in­
smod exec t type. This type is assigned to the 
insmod utility. The second statement allows the 
insmod t domain to use the CAP SYS MODULE 
capability to insert modules. The last statement 
allows system administrators to transition to this 
domain when they run the utility. 

3.3 Protecting System File Integrity 

Just as the integrity of the kernel must be pro­
tected, the integrity of other critical system files 
must also be protected. Separate types are defined 
and assigned to system software, system configura­
tion information, and system logs to protect their 
integrity. The dynamic linker is labeled with the 
ld so t type. Many domains must be granted exe­
cute access to this type, since many programs are 
dynamically linked. System programs are labeled 
with types such as bin t for ordinary programs or 
sbin t for system administration programs. System 
shared libraries are labeled with the shlib t type. 
Write access to these types is limited to administra­
tors. 

The protections applied to the /etc directory are 
an example of protecting system configuration files. 
Most files in /etc are labeled with the etc t type and 
write access to this type is strictly limited. Since 
the /etc/aliases and /etc/aliases.db files and 
the /etc/mail directory must be modified by the 
sendmail program, separate types are defined for 
this file and directory, and the sendmail t domain is 
granted write access to these types, as shown below: 

allow sendmail_t etc_aliases_t:file 
{ read write }; 

allow sendmail_t etc_mail_t:dir 
{ read search add_name remove_name }; 

allow sendmail_t etc_mail_t:file 
{ create read write unlink }; 

An example of protecting the integrity of system log 
files is the wtmp file, which stores login records. The 
policy configuration defines a wtmp t type for this 
file. Separate domains are defined for programs (e.g. 
login, utempter, gnome-pty-helper) which must 
update this file, and write access is only granted for 
these domains. The following excerpt shows permis­
sions granted to this type for several domains: 

allow local_login_t wtmp_t:file { read write }; 
allow remote_login_t wtmp_t:file { read write }; 
allow utempter_t wtmp_t:file { read write }; 

3.4 Confining Privileged Processes 

Flaws in privileged processes are often exploited to 
subvert the security of a system. The example con-
figuration confines such processes by defining sepa­
rate domains for them and restricting their accesses 
to least privilege. One example of such a process 
is sendmail. The following excerpt shows some of 
the permissions granted to the sendmail t domain 
in which sendmail runs: 

allow sendmail_t smtp_port_t:tcp_socket name_bind; 
allow sendmail_t mail_spool_t:dir 

{ read search add_name remove_name }; 
allow sendmail_t mail_spool_t:file 

{ create read write unlink }; 
allow sendmail_t mqueue_spool_t:dir 

{ read search add_name remove_name }; 
allow sendmail_t mqueue_spool_t:file 

{ create read write unlink }; 

The first statement allows sendmail to bind to 
the SMTP port. The next two statements allow 
sendmail to manage the mail spool directory. The 
last two statements allow sendmail to manage the 
mail queue directory. Even if a flaw in sendmail 
is exploited, the set of accesses granted to the at-
tacker is strictly limited to what is specified in the 
configuration. 

Another example of a privileged process is ftpd. 
The following excerpt shows some of the permissions 
granted to the domain for this daemon: 

allow ftpd_t wtmp_t:file append; 
allow ftpd_t var_log_t:file append; 
allow ftpd_t ls_exec_t:process execute; 

The first statement allows ftpd to append to the 
wtmp file. The second statement allows ftpd to ap­
pend to /var/log/xferlog. For even better pro­
tection, a separate type could be defined for this 
particular log file, e.g. xferlog t, to strictly limit the 
daemon to that file. The last statement allows ftpd 
to execute the ls program. As with the sendmail 
example, an attacker who subverts ftpd can only 
perform the actions authorized by the configuration. 



3.5 Separating Processes 

To protect processes in one domain from interfer­
ence by processes in another domain, the example 
policy configuration restricts process interactions. 
The ability to access the /proc entries for processes 
in other domains is only granted to certain privi­
leged domains such as the domain for system admin­
istrators. This is shown by the following excerpt: 

allow sysadm_t domain:dir { read search }; 
allow sysadm_t domain:{ file lnk_file } read; 

The /proc entries for each process are labeled with 
the domain of the process. These two statements 
grant the sysadm t domain permission to access the 
/proc entries for all domains. Most domains are 
only allowed to access the entries for processes in 
the same domain. 

Similarly, the ability to trace other processes or 
send signals to other processes is typically limited 
to processes in the same domain, except for sending 
SIGCHLD to notify the parent of the completion of 
the child. The following excerpt shows a case where 
processes in different domains are allowed to send 
signals to each other: 

allow user_t user_netscape_t:process 
{ sigkill sigstop signal }; 

allow user_netscape_t user_t:process sigchld; 

The first statement allows an ordinary user to send 
arbitrary signals to his netscape process. The sec­
ond statement allows the netscape process to send 
SIGCHLD to the ordinary user process so that it can 
be reaped when it exits. Since there are no state­
ments allowing an ordinary user process to send sig­
nals to an administrator process or to system pro­
cesses, an ordinary user cannot interfere with these 
other processes. Likewise, since there are no state­
ments allowing the user’s browser to send any signal 
other than SIGCHLD to other user processes, mali­
cious mobile code executed by the browser cannot 
kill the user’s other processes. 

Since many processes use temporary files, the con-
figuration must ensure that processes in different 
domains cannot interfere with one another by ac­
cessing each other’s temporary files. The configura­
tion achieves this goal by defining a derived type for 

temporary files created by each domain and limiting 
access to that type to the corresponding domain. If 
a domain requires access to a temporary file created 
by another domain, then it can be granted permis­
sion to that type on a case-by-case basis. The fol­
lowing excerpt shows a portion of the configuration 
for the temporary file type defined for the ordinary 
user domain: 

allow user_t tmp_t:dir 
{ read search add_name remove_name }; 

allow user_t user_tmp_t:file 
{ create read write unlink }; 

type_transition user_t tmp_t:file user_tmp_t; 

The first statement authorizes the ordinary user do-
main to create and unlink files in the /tmp directory. 
The individual controls over each file ensure that 
the domain cannot unlink files created by other do-
mains, e.g. the administrator domain. The second 
statement allows the ordinary user domain to create 
and access files with the user tmp t type. The last 
statement causes files created by the ordinary user 
domain in /tmp to be automatically labeled with 
this type. Similar statements are defined for the 
administrator domain and for other domains that 
use temporary files, with a separate type defined for 
each such domain. This ensures that ordinary users 
cannot create and use their own temporary files but 
does not allow them to access the temporary files of 
other domains. 

The configuration likewise defines different types for 
the home directories and terminal devices used by 
the different domains for users. The following ex­
cerpt shows statements granting permissions to ter­
minal devices and home directories for the ordinary 
user domain: 

allow user_t user_tty_device_t:chr_file { read write }; 
allow user_t user_devpts_t:chr_file { read write }; 
type_transition user_t devpts_t:file user_devpts_t; 
allow user_t user_home_t:file 

{ create read write unlink }; 

3.6	 Protecting the Administrator Do-
main 

Since the administrator domain is highly privileged, 
the policy configuration must ensure that this do-
main can only be entered in a secure fashion. The 
example configuration only allows entry via domains 



for the login program and the newrole program. 
The login program is run in a separate domain for 
local logins than for remote logins so that the con-
figuration can prohibit entry on remote logins, since 
such logins may bypass authentication via .rhosts 
files. However, users who are remotely logged in 
may still use the newrole program after login in 
order to enter this domain. The following excerpt 
shows some of the relevant statements: 

type_transition getty_t login_exec_t:process 
local_login_t; 

allow local_login_t sysadm_t:process transition; 
allow newrole_t sysadm_t:process transition; 

The first statement causes the login program to 
run in the local login t domain when it is exe­
cuted by getty. A separate statement that is not 
shown causes the login program to run in a sep­
arate remote login t domain when it is executed 
by rlogind. The next statement allows the lo­
cal login t domain to transition to the administra­
tor domain. The last statement allows the newrole 
program to transition to the administrator domain. 

As described in the previous subsection, the exam­
ple configuration also protects the administrator do-
main by preventing processes in other domains from 
interfering with it. The administrator domain is also 
protected against the execution of malicious code 
by limiting it to executing approved types and by 
automatically transitioning unsafe software such as 
netscape to a more restricted domain. 

4 Related Work 

Two other security projects have developed flexible 
access control frameworks for the Linux kernel. The 
Rule Set Based Access Control (RSBAC) for Linux 
project [15] provides a general framework for kernel 
access control and a set of security policy modules. 
The Medusa DS9 project [3] provides a kernel access 
control architecture that allows processes and files 
to be placed into separate virtual spaces in accor­
dance with a policy defined by a user-space autho­
rization server. 

Several other projects have developed particular ac­
cess control mechanisms for the Linux kernel. The 
Domain and Type Enforcement (DTE) for Linux 

project [11] provides a variant of Type Enforcement 
that uses an implicit typing mechanisms based on 
pathnames. This project is based on the original 
DTE prototype [4], which also investigated how to 
configure the DTE controls to meet real security 
objectives [18]. SubDomain [9] provides a variant 
of DTE that is limited to confining programs and 
that directly specifies access control configurations 
in terms of programs and files rather than domains 
and types. The Linux Intrusion Detection System 
(LIDS) project [1] provides administratively-defined 
program-based access control lists for files along 
with a collection of other features. For further dis­
cussion on related work see [13]. 

Due to its highly flexible architecture and compre­
hensive controls, SELinux is capable of represent­
ing many of the security policies and mechanisms 
provided by these other projects. However, since 
SELinux was only designed to address mandatory 
access controls based on the labels of subjects and 
objects, it cannot directly represent some of the re­
quirements of these projects. The Linux Security 
Module project [2] has been created to develop a 
common set of kernel hooks that can support the 
needs of all of the Linux security projects, with the 
goal of integrating this general set of hooks into the 
mainstream Linux kernel. 

5 Conclusions 

The integration of mandatory access controls into 
Linux is necessary in order to allow secure systems 
to be built with Linux. Since no single security 
model is suitable for all purposes, a general-purpose 
solution must be sought. SELinux has many of the 
properties that should be considered for general-
purpose security architecture. 

SELinux is a comprehensive and flexible system 
with a well-defined MAC architecture that has been 
validated through several prototypes. It cleanly sep­
arates policy decisions from their enforcement us­
ing general interface. It provides support for policy 
changes and is independent of policy, policy lan­
guages, and labeling formats. It has individual la­
bels and controls for kernel objects and services al­
lowing fine-grained control over such abstractions 
including: file systems, directories, files, open file 
descriptions, sockets, messages, network interfaces, 
and use of capabilities. Additionally, SELinux has 



configurable default behavior that allows the secu­
rity mechanisms to function transparently to appli­
cations. 

The security model chosen for the prototype 
SELinux security server has proven to be a very ef­
fective model for security. Using its combination of 
IBAC, RBAC and TE, the SELinux security server 
provides flexible support for a wide range of secu­
rity policies. With it, it is possible to configure the 
system to meet many security requirements. The 
flexibility of SELinux, allows the security server to 
be modified or replaced as needed without impact­
ing the rest of the kernel. 

The example security policy configuration released 
with SELinux serves as an example how a number 
of important security objectives may be met us­
ing the prototype’s security model. The flexibility 
of the security policy mechanism attained through 
the configuration files enables the policy to be eas­
ily modified and extended allowing customization 
as might be required required for any given instal­
lation. Hence, many security policies can be sup-
ported with the same base system. 

Type Enforcement has proven a valuable security 
policy abstraction that has made the SELinux pro­
totype a better system. Its advantages over the tra­
ditional approaches to MAC have led to a security 
policy that better protects the system. The poten­
tial that the TE access matrix could become quite 
complex is a possible downside to TE, but the ben­
efits that TE offers should far outweigh this. Ex­
perience with SELinux shows that a realistic policy 
can be constructed that greatly improves security. 
Complexity can be managed through the distribu­
tion of base security policies with the system that al­
low individual installations to customize the policy 
as needed rather than start from scratch. Complex­
ity can be further managed through policy specifi­
cation language enhancements and the development 
of policy specification and analysis tools. 

The SELinux prototype is very much a work in 
progress. SELinux was never intended to be a com­
plete secure system. Instead, its intent was to serve 
as an example of how strong, flexible MAC could be 
added to a mainstream operating system to greatly 
improve the security of the system. SELinux suc­
ceeds in doing this for Linux. The Linux Security 
Module project [2] is an important effort to bring 
MAC to Linux. Success in its goal of creating the 
general security interface for the Linux kernel will 

enable Linux users to realize not only the security 
benefits of SELinux but also those from other secu­
rity projects. 

Availability 

The Security-Enhanced Linux software is available 
under the GNU General Public License (GPL) at 
http://www.nsa.gov/selinux. 
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