

secure mo. 6

last
This lecture, the formeinentin in series, will be divided into
 in the field of com mure at hin security during the period between, the end of
 is not po spectacular as the one played by connmidetow mitheriginec, which

do not think it needs any to intimated in the first lecture of this aeries, I 1 shalt -mot apologize for

mine machine

 which howe aw important bearnug upose the history of Amernam Ne progress in the development of now ideas and methods in cryptology 1 , sulk as have bean made in reacint year.. I have to omit then for
 - the reason "that the security clasoifeation of this lecture is only confidential

 and spice fed ely to something I gand about hin pt the ex k, facture

one contribution to the science of cryptology which is notable in the
and for which pe minuit dityond to give hum fall credit. history of the subject \wedge Here's an excellent picture of Poe, probably
made in 1849, only a fer years after he had attained fame and found life's

Vicissitudes too much a burden.

Many Americans believe that cryptology in America was born when

Poe's story of the "Cold Bug" and his important article "A Few Wards on
aud I a combined that

Secret Writing" had been published, sur such a belief is thwarranted. Et is the that
in a previous lecture I mentioned James Lovell and characterized him as人
the one-man KSA who served the Continental Congress at cryptologist. But
Lovell's monte has thus for remained wordily
 untinown to all lint a very, very few of the sAmpitpingin cognoscenti
 in the word If cryptology, as agent the wold - wide acclaim
 that has come to Poe in that field, \mathcal{F} for one am quite eager to
 actenowledge the inetsinednats of the onyptologno world to.
 Piet for a dictum of haghost importranem the peraniea.

3xd DRAPM

General in the Arisy and whose official title in the Army was that of Birector-General of the Hospital and the respective Rods mental Surgeons".

Ais a British agent, Dr. Church was indiscregtr he used a cipher that was two others, Elbridge Gerry, fr the Committee of Safety, and Colonel Elisha Porter, of the Massachusetts Militia. The Church episode is exceedingly Interesting but too long to tell in this lecture, so Ill reserve it for a future opportunity.

But now_let's go back to poo_and_see whatminemanetefaide from what did Pore write
The Gold Bug which makes his name notable in the history of cryptology?

First, how did Poe become interested in cryptology? it appears
that in 1821 the interception by French security police of certain
correspondence broke up a conspiracy to return the Bourbons to the
throne which they had lost to the rival Bouse of Orleans. The correspondence,
which was between the Legitimist Duchess de Berry and her conspirators in

Paris, was in cipher but of a rather simple sort; it was monoalphabetic,

STC DRAFP

Whth a modification that made solution a bit tricky. A French orator
named Berryer solved the correspondence and the solution, as well as the whole affair, attracted a centain amount of interest in the world. In particular, the story attracted the attention of Poe whose natural
inclination toward the obscure, the mysterious, and the enigmatical, let
toward a reaation that could easily be anticipatedi Poe became interested In cryptology. Now, it is qutte likely that on first contset with the subject he wes ehtirely self-teught, but it wasn't very long before he sought out what could be found in Averice on the subject, including what
there vas in at least three encyciopaedias, the Britnpoica, the Amerieane, and Abraham Rees' GYelopasdia. There wasn't much in those three sources inn'

 Installment of his four-part article entitled "A Few Words on Secret Writing, " published in Graham's Magazine (July, August, October, December, 1841) he notes this fact and says:
"It, however, there should be sought in these disquisitions-or in axy-mules for the solution of cipher, the seeker $w 111$ be disappointed. Beyond some hints in regard to the general structure of language, and sone minute exericaes in their practical application, he will find nothing upon record which he dee not in his own intellect possess."
Note carefully that y final perisarc, that a person packing information on the pulgrect ifurle find, nothing upon record which
 The dies note in his our intellect poons". There I'
 hand in America on the subject of cryptology in Poe's time, but what there
was Poe quickly absorbed and thus he became an expert--or so he thought. Perhaps I was a bit severe on him in $\frac{a}{7}$ preceding lecture when I said that Poe appears to have sincerely believed that any cryptofram he couldn't. solve was not a valid cipher, and I cited a little ditty reflecting on such a naive belief. So now I'll try to make it up to those of you who happen

3ra drame
to be Poe 1dolators by teliling you aome details about a cryptologic dictum he enunciated, a dictism which has become world fansus in cryptologic tradition and which those of you who atm to become professionais in the field of cryptology should ponder over from time to time.

In a previous lecture it was pointed out that cryptanalysis is reaily a guite ancient art or science, but it seems clear that it was Poe who was the first to contend that there was no such thing as a cipher which can't be solved. Poe didn't soy it guite that siaply and balaly, as some people seen to think. Let's see exactly what he did say.

The very first time Poe wrote about cryptography, which was in a brief article that appeared on 18 December 1839, in a jownal cailed "Alecander's Weekly Messenger," he seid, with reference to the solution of enigmas and conuadrums, that "...rules really exdst, by means of which it is easy to decipher any species of hieroglyphical writing-wthat is to say writing where, in place of aiphabetical letters, axy kind of marks are made use of at random." At the end of this atatement there is an asterisk calling attention to a footnote which appears at the end of the articie.

3ra danpr

The Pootnote says:

"For example-in place of A put $\neq[\mathrm{a}$ dagger $]$ or any other arbitrary character--in place of $B, a *$ [an asteriskfetc. etc. Let an entire alphabet be made in this mamer, and then let this alphabet be used in any piece of writing. This writing can be read by means of a proper method. Let this be put to the test. Let any one addreas us a letter in this way, and re pleage ourselves to read it forthwith-however unusual or arbitrary may be the characters employed."

Several weeks Later, on 15 Jamuary 1840, umder the heading
"EIIGAAIICAL," the first responee to this challenge appeared. Before
giving the cryptogram, and its solution, Foe wrote:
"Some weeks since, in an editorial article under this head [RIIGMAIICAL], we mentioned that, with a proper method, it would be easy to decipher any piece of writing in which arbitrary signs were made use of in plece of proper alpasbeticel characters... pledgang ourselves, at the same time, to read any thing which should be sent to us thus written."

These two statemeats contain the gerin of the ides which later was

Let us see exactly how, a year and a half later, this germ of the idea vas
elaborated upon in his very first formal statement of his dictum, which
appeared in the 25 March 1840 issue of "Alexander's Weekly Messenger."

Here is what he wrote:
"He assent roundiy, and in general terms, that buman ingemuty cannot concoct a proper cypher which we cannot resolve."

3ra mary

Note carefuliy that word "We"--1t madorabtediy is an editorial pronoun. It is almost absoluthy certain that" it could only refer to Poe himself, becsuse no other perser cornected with "Alexander's Veokly Messenger" has ever been diseotered to have dabbled in cryptograplay. How way, let us ask, did Poe infert the word "proper" before the word "cypher" in this
first formal statement of his dictumi The ansurer must be that he felt that in making hif chailenge he had to be careful to set up certain limitations upon the kind of ciphers he would undertake to solve, nanely, simple eiphers, or what we now oall monoaiphabetic aubstitution ciphers, in which ene and only one substitution alpabet is invoived. By insertints that word "proper," with the corinotation I have hare elucidated, poe mast have felt that he had protected himsalf agrinst any charge of frand, becanse, as you all are or should by this time be fully aware, practically every monoalphabetic substitution cipher can be solved, no matter that claaracters are used in the cipher text, previded only that the original plaintext
message is in an alphabetical language, is of aufficient length, say 25 or more characters, and you know a bit about the language iavolved. This is

3rd mary
true even of the sert of "erypts" which appear in many of our daily
newspapers, ciphers which are made atificult by the use of outlandish
words and outrageous alction so as to supprese the normal frequencies
of the letters of the Baglish language, an exemplified in the following specimen:

Jroul vag, Mher gapsy, stalk mohr nth tise. Mpongwe gunboy
aims nickt khnum. Unfed, knab Jhum, agapi.

If you think I m trying to put over a fast one on you, or that
there are typographical errore in this example, consult your Webster's
unabridged English dictionary. You'll Ind every one of those words in
1troud what the massegg pays makles panse - Sort of pense, that's.
By setting up the Linatation of monealphabeticity Foe made
certain that he could solve any challenge cryptogran; if he couldn't, then

It meant that the challeage cryptogram was fraudulent, so far as be was
concerned.

In the 22 April 1840 isaue of "Burton'E Gentlemen's Mtagazine," whatch

3rd IRAT
vas marely a continuation of "Alexander's Veekly Mesdenger" under a
different name, Poe wrote at the end of one of his solutions: "We Bed
again deliberately that human ingenuity cannot concoct a cypher which
humen ingenurity eannot resolve." Note, now, a simple but opale signifi-
cant change in this, the second statement of his dictur. In the Ifrist
version he equated "human ingemuity" with his own ingenulty--the two apparently
vere, in his opinion, equivalest. But in the second version he substituted

Por the "We" in the PIrst vergien the phrase "muman ingenuity.' Iet's
place the two versions side by alde for couparison:

Well, here you can easily see how these two atatements or versions
of Poe's dictum differ. In the first, Poe placed himself upon a very tall
pedestal of exyptanalytic capability; in the second he becomes more
modent and leaves room for other aspirants to the accolade. But I'm sorry
to heve to tell you that oniy a bit later, in a letter to a man nomed

Trailey, whose challenge cipher messege he'd Just solved (it was the most

STd DRAPFI
difficult which he ever eilved, ho wrote: "Hotidiag intelifgible can be written which, with time, I canwot decipher." Poe was rather Jubilant about his solution of the Brailey cryptogran and perhaps he was jastified-It was a very eariy', if not the earliest, case of the use of outrageovs diction, such as is form in the modern "crypts" for the purpose of thwarting the would-be cryptanalyt. In Fig. 00 you see 14 just so poe published it. In Fig. oo you see the cryptogren with an inter-linear decipherment which you cen earily read, and in Pig. 00 you see Poe's orm interinnear decipherment of it.

PHONO	FHONO	PHOIO
FIG. 00	FIG. 00	
FIG. 00		

3rd DRARE

4982. I wisin that Poe had never written that flamboyant sentence "Nothing 1atelligable can be written which, in tine, I cannot decipher," because of Its unbeconing immodesty, especially in viek of his real leck of professional
experience. It seems that Poe had reason to regret having made such a bold and bald clain, because, as you will goon see, in the third and final
statement of his dictim, he once more modified it. This time his dictum becones mere consistent with reallty and with the modeaty that we like to ace
in the uritings of one of the greatest literary ilgures of modern times.

Let us see how Poe vorded the dictum in his third and final attesipt
to put his idea across. It is Found in his sbort story "The Gold Eug." I've mentioned that tale trice already, but I'll now add that those of you ha haven't read that story should do so before letting another day go by, for
it is a fascinating one. It is told with an adroitness and permpicacity which nobody else in the world before or after him has surpassed or even equalled. In that tele Poe's dictum is stated when the hero says: "It

3xd DRAFI
may vell be doubted whether human ingenifity can construct an enigge of the
kind [Buch as the cryptogram in "The Gold Bug"] which muman ingenuty may not,
by proper application, resolve." In this form Foe neatiy puts the matter in
a manner that aptiy expresses what professional cryptologists believe to be

2tomman for this he deserves to be remembered for all time by all
professional cryptologists. I would like to conclude this digression about

Poe by guoting a paragraph which I have taken from Fleteher Pratt's Seeret
and Urgent and vaich I think quite interesting:

Abstract

"Poe has an important niche in the history of cryptography although he brought little or nothing new to the art but his taste for it and a natural skill in decipherment. He made it briefly popular in Philadelphia in the 1840^{\prime} s, but what was a great deal more important he attracted ilterary interest to the subject, particularly in France, where his works were received so much more enthusiastically than in his orn country. The Gold Burg had numerous initators there. Jules Verne three times introduced cryptogrems and their solution as important elements of his stories, and Balzac found the mania for ciphers in fiction so widespread that he was moved to put a cryptogram three pages loag into la Physiologie du Maviage. It must have amased the laat uriter greatiy to discover that for years after there was hardiy a rriter on ciphers in any country who aid not attempt to solve the Phybiologie du Mariage cryptogram and fail in the attempt. Gommandant Bazeries, the same who broke the Great

REF ID:A62834

Ohave someth'ing to ald now which will perw a bit antu-chmactictin ifther live toed you of the brackground of Poe's dictum. 2 came aeross it only quite recantly in lookning up a cartain quantion in an old book on engpitology. Distan now to these worts:

- We are now attampting an arduous and diffientt task; for all cryptologists have hutherto cousudered this method. If writuig the writer here reffers to what we now call the topodring megoltiple alphatat syctema repating kay I not meraly extremely difficuet tut actually impossitle to polve. I have aluapp bolaird, howrever, that angthing locked uply the use of a pyotem may be opered by uning the perne oystem". Who wrote this parl of eryptilogio wiaderm? Que of the manter crypptologints if the Renaissance, none other than the Stalnan mathomatician and physiaist \ni mantioned paveral Aines before, namaly, Siovanni Bapticta Porta. The ptatemant appears in the peaond edition 1) his De Furtirs fiterarum Notis (Naples, 160 z ; DookIV, Chaptor XVI, p.119.) But lat us note, too, that what Porta pays on the quection is cortainly not quites the paue as Pre's dictum. In fact, Porta's dictum- neques the use of the same system to unlock a eryptogram that was $-13 a-$
used in locknigit, that is, it implies that the achorlbar
 door is to use the same key that wow used to lock the door and we know that this is not true either of locks or of cryptograms. Neume, Poses placement pill piands as the very earliest expreasion of the basic of gneatiopadice eryptologyraud therefore g say. that for this alone Poe deserves to be remembered for all time by eryptologists ed the world over.

There are several more historical ikea like to present by way of digression e fam one man themes in this lecture. for montane., Id levee teotoll you why Fromarem, the father of British cryptology, dosenves credit for mu rininatran whish is not only basic in the science of ilatelugnaphy, bott tai morse dot and dash pyptone and the Boudot or printingdelegraphe sypokion, but also ss basic in modern electronic digit computer technology But there grot suit trine for any more detainer. Elates gat ow frith our history of develop and tots in communseationi. security rand see how Poe dictum fits into that picture.

Clpher of Iouls XIV, finaily spoiled the sport with an analytical essay demonstrating that the message was an elaborate fake, almost as caretully couposed as a genuine cipher, and arranged to have a mumber of almost-clues."

If you'll take the trouble to look up what Bazeries asys about this
famous and masolved Balzac cryptogram you'll find something interesting.

Pratt eays that Bareries "finally apoiled the sport with an analytical essay demonstrating that the Ealrac/message was un elaborate Pake." And so Bazeries does say. Hut one can only smile at the manner in which Bazeries demonstrated that the Balzac message is a Pake. Pirst he "demonstrates" that it can't be monalphabetic--and his reasoning leaves much to be desired. In fact, it is fallscious. Then he says that it can't be a systen of transposition, which we may grant without argument. Bazeries then closes his reasoning by a simple denial that it is an encipherment of the genus of the cipher square
[Vigenere7--but he doesn't even attempt to substantiate that opinion.

Bazerdes coneludes:

"Balmac, having wished to say that the question of the confessor and the lover was an indecipherable question, without doubt left two or three pages blank in his manuscript, and said to his editor: 'Fill this up as you please, with ceptital letters, small letters, figures, punctuation mariss, etc, putting some of them ilght side
up, some upside devin, in as wry that will torn a confurwigy which nobody will maeretank.'

Prat' E what he did.
"Mans the Balzac cryptogram is simply a Elacetiounness on the part of the author and is not the result of any eryptograplaic mystery matevar."

How like Poe: What Daserles coulan't solve was not a valid crypto-
gram. Maybe he's right ion haven't tried to solve the Balzac cryptogram,
so I. don't know. Why don't some of you try it.
But be sure you get the convect version, which F believer is only to be frump in the first edition of the Balzac work. There are other

3rd mary

Now ve mast ge on with our story of the derelopments in the history of cryptology after Poe'm bime, that is, after the 1840's. It will be userul at this point to sag a few vords about the role played by the imvention of electric telegraphy and by the rather rapid develogsents and improvements In electrical comminications, for they brought about equaliy rapid developments and impxovements in exyptogrephic commuications and, as a concomitent, In cryptanalytic technology. And here I begin y second alregression from our maidn theme.

Of course, there can be no aingle and simple explamation for the rather rapld developmenta and ingirevements in exptologic teeknology that begen about the midale of the nimeteenth century. It would be incorrect to eseribe them solely to the iavention and development of the electric telegraph, but it is valid to assum that telegraplay, that is, eleetrie telegrapky, now began to pley the major role. I refer here particulerly to that type of electric telegrephy which was invented and developed by Samul F. B. Morae. Merse was primarily an Americen pertrait painter but

3rd DRAFI
he had a good backgreund of education in electrical studies. Aboard the packet-ship "Euliy" in October 2832, returaing from Europe, Morse developed plans for a telegruph recording instrument and laid down the principles for the first practical oystem of clectric telegraphy. Morse's system was based upon a rather simple scheme and it was because of its simplicity that electric telegraphy became practical: short and long pulees of current in an electrical circuit, separated by intervais during which no current flows. The short and long paises of eurrent are terned respeotively dots and dankes, so that people generally yefer to the scheme an "The Hoxse dot and dagh code." It will be vell to stop Fight here and emphasise that the word "cede" in this context does not have by connotation
of "secrecy" because there is not, and there never mas been, aything necret about "The Morse Code." The vord as used in this context simply means a "convention," "agreement," "set of rules," etc., ss in the expreseions "the Napoleonic Code," or a "builditg code," and the like. The Morse Code is merely a set of conventional equivalents for the 26 letters of the English alphset, plus some additional ones for the 10 digits, and fow more for puactuation signs, such as comm, period, question mark, etc. Its usage in telegraphy spread very rapidiy and/hoon it becant fansous throughout the entire civilized world. Basically, what were (or are) these equivalentsi the answer is very simple: they are combinations and permutations of two simple elements: periods when a current of electricity slows in circuit, separated by intervals during which no cuyrent Plows. . In other words, the Moree Code is a way of representing a set of about 40 elements (26 letters, 10 digits, plus several Bigns of punctuation) by combinetions and permatations of only tro elements-periods of current and periods of no current. It is trus, however, that within each of these two periods, the "lemgth" or rather the duration of the differentiating signals is variable, but the ratios between the ahortest agnal and the
others are more or less fixed, since in manal operation the duration of the shortest signal and in tum the speed in worde per minute depends upon the skill of the operetor. When current is flowing, for instance, the duration of the flow is variable, the shortest, about $1 / 24$ th of a second, for a moderate wond apeed, representing i dot ($s=1 \mathrm{und} t$); the next in length, about $3 / 24$ the of asecona, reprecenting m daeh ($T=3$ units) the next in length being a long dash, about $5 / 24$ ths of a second, representing the letter L ($=5$ vaits); and the Longest, being a ash of seven maits in duration, representing the digit zero. These leagths are bit theoretical. Likewise, the duration of the spaces, that is, the periods of no-current, are also …
variable in lengths the apace; betveen the dot-dish componenta of a letter equais the length of one dot, ($=1$ unit), except in certaln dot letters (C; $0,-\mathrm{R}, \mathrm{Y}, \mathrm{Z}$) in Areexican Morge, which contain a space equal in leugth of that of two dots. The apace between the letters of a vord is equal to three dots, and the apace betreen words is equal to six dots. (Agein, these lengths are a bit theoreticel.) It is clear, therefore, that the Morse code is by no means one which is composed of but two olements, dots and danhes; and this is
true elno of the Internstional Norne Code where there ere no letters in which the dots are separrted by spaces equal to two dots, nor ore there letters with spaces longer than the length of three dots. It isn't even true that the Norse code is composed of permatations of three elements, dots dashes, and spaces, because, as indicated, the dashes are of several lengths and so are the spaces.

Morse was quite logical and clever when he devised his set of dot-daghspace equivalents for the letters of our alphabet, because from the very first he composed those equivalents in accordance with the normal frequencies of letters in Fnglish. To the letter E he assigned a eingle dot; to the letter T a single dash the shortest desh; to the letter I, he asaigned two dota; to the letter A n dot followed by $\%$ dash etc. A fev years later es Norse telegraphy spreed fil over the world. some modifications were mede in Morse's origingl code when by intemational agreement r set of equivelents was
adopted for international telegraphy, although in tho United States the American r

Morse continued, and still continues. to be used, because of its bupposediy greater efficiency. Both codes are shown below.
(Enc Brit Vol 21, p. 883 (Bne Brit Vol 21, p. 883, 14th Ed.

Photogreph Yorse Code

I think that most of you, when you read or leara something about the

Morse Code, probably hear, in your imagination, the "clatter-clatter" of a telegraph inatrument representing dots and dashes. And when you listen to certain programs on your radio you hear the shoxt and long high-pitched squeals of radio-telegrapky, representing the dots and dashes of the Morse Code sent at high apeed. But Morse's first model of his telegraph system was a recording Instrument-dots and dashes, separated by spaces, were recorded, that is, printed or indicated, upon a moving paper tape. Here's a picture of it. (Britannica, Vol. 15, p. 828) In April 1844, Alfred Vail, one of Morse's associates, made the important aiscovery that it was possible to read messages by sound. He noted that at a dot or'dash is being recorded on the moving tape the printing lever makes two distinct auunds, one as it strikes against the stop 1inating its motion in one direction and again in retreating, as it strikes, against the stop limiting its motion in the other direction. He noted that when a dot or a short dash is recorded the interval is shorter than when a long dash is recorded, and he found that signals could thus be read by the length of the intervals between sounds. Thus was born "the soumder." Because of its sluplicity
"sound" telegraphy spread like wild-fire; but, urfortunately, it retarded the development, or rather the re-birth, of "recoraing" telegraphy for many years. Howadays, one seldom sees or hears the "clatter-clatter" of the Norse Sounder, for sound telegraphy suffered a lingering death when modern printing telegraphy was invented, developed and perfected. Today, in America, there are only a very few working veterans of the Morse sound telegraphy; progress has passed them by and soon there will be none remaining, except those few "old-timers" you may still see belaind the ticket windows of railuoed station offices in the country, in very smail town and hamlets. In international commercial radiotelegraph communications you can still hear the rapidiy-interrupted whine of the Morse Code dots and dashes, although even in that field radio-printing
telegraphy is rapidiy expanaing in usage.

If question be raised at this point as to why this lecture devotes so
much time to "codes" such as the American and the International Norse Codes, which bave little to do specifically with secrecy or cryptology, I can only say
that in practical work the professional cryptologist uses his knowledge of these types of "codes" to good advantage, when he must straighten out exrors or
"garbles" or the like mede in telegraphic tramaisaion or reception. The infor-
mation is therefore quite relevant and is surficientiy inportant in the cryptajcigen
stuay of electrical conmanications to warrant the presentation of additional infor-
mation of interest and pertinence.

Before passing on to ny next digression, I think you will be interested in
secing the titie page of what is belleved to be the very first codebook which
addressed itsolf apecifically to the new technology introduced by Morse's electric
teflegraphy. Here it 18. 耳ote the date of publication, 1845, which was juat
one year after the ifrst telegraph line in Anerica, the one between Washington and Baltimore, was put into public use. As you can see, the oodebook was produced by Francis O. J. Sinth, one of Morse's partners, and it is dedicated to
"Professor Saminel F. B. Morge", Inventor of the American miectro-fignetic

Pelegraph." I said that that first telegraph line was put into public use in

1844 for originally it wee built for experimentel use, $\$ 30,000$ having been
appropriated by Congragis in 3.843 for this purpose five years after Morse had demonstrated his telegraph before President Van Buren and his cabinet eariy in
1838. You'll be amused to learn that soon after his telegraph had proved to be
a great success, Morse offered his systen and patents to the Government for

REF ID:A62834
$\$ 100,000$, but the offer was refused upon the recomandation of the Postmaster
General, who reported that he was "uncertain that the revenues could be yade
equal to the expenditures"--this, after the inmense value of the telegraph to the Government had became fully apparent. But perhaps the refussl was best after all, for had the offer been accepted the chances are good that the telegraph rould have become a governmental monopoly, as is the case in every country except Canada and the United States. When Morse was turned down he enlisted private capital, and in 1844 a company was organizad to erect a telegraph Live between New York, Baltinore and Washington. Ton years later, there were more than 50 telegraph companies in the United States using Morse patents, but now 100 years later, by act of Congress, there is only one company in the United States, the Western Union, which offers to the general public a domestic telegraph service wherein a message may be handed in "over-the-counter" or telephoned in for transmission. Western Union accepts overseas messages but transmits them via cable. On the other hand, radio-telegraph companies such as the Radio Corporation of America, the International Telegraph and Telephone Company, etc., cannot accept messages to be transmitted

Uithin the United States, but only overseas.

So much for the second diversion from main theme. I have but one more, which I hope will be interesting and will give you some usoful information.

Howedays ve see many references to certain relatively new machines cailed electronic digital computers, and "data-processing machines." These machines constitute a poat-World WariII innovation which offers a means to increase man's productivity in many different vays and at ever-increasing speads-wherever large-scale, repetitive clerical and computational tasks can be mechanized, or wherever there is a possibility of speeding up operations, or of saving time, labor and money in processing large amounts of data. Thay can be "instructed" or "progremed" of great assistance wherever a great deal of information is needed to manage enterprisea, run institutions, direct research, and plan endeavors, They are even being developed or modified to perform, of to esaist in the performance of, large-scale language transiation projects, in mathematical research, biological investigations, otc., otc. These machines are so versatile because they can deal with all such problems

In one and alwas the sarse very simple way: they function according to one or the other of two and only two states or ways which may be termed "yes" or "no", the equivalents of which, in the language of electricity, are the conditions called "current-on" or "current-off", just as is the case in an ordinary electric-bulb in your home-the light is either "on" or-"ore", depending upon the position of the ewitchwwich controls the flow of current to it. Because these two conditions can be changed electrically within the components of the computer, it can perform its operations at eraat apeed, electronic speed in fact, and that's why auch machines are called "electronic compriters." But why are they called "electronie digital computern?" It is because they employ circuitry and mechanians which function in what is termod the "binary mode", that is, according to a syatem that operates under one or the other of two and ouly two conditions representable by two and only two different symbole or digits which may be extended to denote all numbers or quantitie no matter how large. The method is coumoniy called "the binary-aigit eystem." The expression "binary digit" gave rise to the abbreviation or rather contraction "bit", coined by one of MSA's assocfates, Dr. John Mukey, of Princeton and the Bell Telephone Laboratories, by simply joining the first two and the lant two letters of the
expression, It is easy to understand that one could use any two symbols or digits but it is common nowadeys to use " 0^{\prime} and "I", i. e., the first two of our ordinary series of digits $0,2, \ldots 9$. It is posalble to repreaent or "encode" any sort of message-a printed page, a musical composition, a photograph, etc., etc.--by using only this pair of digats. To sumsarize, electronfedigital computiors operate on a method of notation or counting based upon the "binary scale," and bit of explanation as to how they are able to count according to that acale will be useful if you are to understand certain fundamental principles underiying the functions and manner of operation of these computers.

In everyday life nowedays we add, subtract, aultiply and divide according to a system of counting that is based upon the decimal or denary system, in which arithmetic notation is based upon "decades." Let me explain the idea in sinple language: In our systea of notation there is a sequence of ten symbols or numbers called "digits", namely, $6,7,8,9$, and they have what is called "positional value," that is, the numerical value of a aigit in number consisting of two or more digits depends upon the position of that digit in

REF ID:A62834

- HFA GFETL

the mumber under consideration. A digit at the extreme right in the muntmer has a unitery value, that is, it represents as many units as the digit indicates. In a compound number the value of a digit to the left, of it has a value 10 timas as large as that of the one to the right of it. The positions from right to left have these values:

20× $10 \times 10 \times 10 \times 10$	10x10x10x10,	10x10x10,	10010	101
or	Or	Or	or	
100,000	10,000	1,000.	100	101

The foregoing simple presentation of the metter makes it clear that next to the left ox "hundreds" position, and so on. Although we write mabers conisis.
ting of two or noxe digits from left to might, the numexical values of the Individuni digits composing the number increase from right to left by the
successive powers of 10. The number 1796 , for instance, represents one
thousend seven hundred and sinety-six units of something being counted, welghed, or measured, that $1 s, 103_{4}\left(7 \times 10^{2}\right)+\left(9 \times 10^{2}\right)+6$, or $1000+700+90+6$,

Werthe foregoing rather lengthy explanation may seem superfluous; in fact, It appears hardly worth so many worde of exposition, because the natter to be (and it really is) very obvious to us now. But it took thousands of years of progress in civilization to invent or develop the very simple syster of nota-
tion which we call the decinsl or demary system. It is perheps eatohishing that none of the ancient civilizations of Aitiea or surope had such a sinple system. Lat memind you that in the Bowan system of notation, which was bssed upon strokes, probably representations of fingers, there were separete symbols for numberg. "One" vas represented by aingle stroke (I)s "five" (V), "ten" (X); "fifty" (L), "hundred" (C), "pive mundred" (D), and "thous and" (4). The number 1848 was repxegented by eleven letters-mpccuxilin. Later, by aubtraction, 4 was written as IV; 9, as IX; 40, as XL. Sometimes a bar over a symbol mitiplied its value by 1,$000 ;$ tmas $\bar{x}=10,000 ; \overline{\mathrm{C}}=100,000$; $\mathrm{R}=1,000,000$. How would you like to find the square of the muber 1796 using Roman motation Many aneient civilizations used system of notation similar to that of the Romens; and they were all rather cumbersome, compared to our present gystem. It, is hardiy a curious fact that prectically the world over systemś of nuwaration vere besed upon oounting by tensimbecause flugers wert (biad still are) used in counting and we bave ten of then. (the word "digit" comes Irom "digitus" and means "Ifnger" or "toe", although noviadiys we say that our hand comprises four finger and a traib.) whe deary syaten
including both the idea of the positional value of notation and the iden of a having a syabol for sero, was invented in India; and was brought to Europe by the Arabs.

But there are systems of counting other than by tens, Man has five fingers on each of two haxds, and five toes on each of two feet. He thus has a counting "abacus" arrangeable on a scale or redix of 5, 10 or 20. System based upon radix 10 are very conventent, as, for example, in our American currency aystems 10 cents make "dime," 10 "dimes" make a dollar, etc. But a scale of 12 is also very corvenient, the number 12 being divisable by 2,3,4, and 6. In matters other than Pinancial or currency ve t till in the Uaited States use the British syster of counting; we use their system of

Innear measurement which is basad upon 12 inches to the foot, their system of weight measurement, whech is based upon 12 oumces to the pand, and so on.

But I now wish to say a few words'about a system of counting based upon the redix 20, the so-cailed vigesimal system, which is the one that was used by the Celts in Europe 2000 years ago and by the ancient civilizations of

Central Anerica. Consider, for instance, the mathanatical system of the ancient

Haya of Yucatan, who thousands of years ago were great astronomars. Inale-

3 ad dratt

pendently of the Hindus of Indin, or of the Arabs, or of the suropeans, and probelbly meh earlier than thom, the Nay invented or diacovered two ideas of first irportance in any efficient gystem of emmeration: they had a symbol for "zero" and thair symbols had positional velue, fust as do the digits in our present-day denary systam. A symbol or unit in the last (or units) piace in the Mays system hod the value " 2 "; it took 20 such unite to make a unit in the next-to-last place, and so on, so that in their system the positionsl values of the symbols vent thus:

Gth Position	Sth Position	4th Position	$3 x d$ Position	2nd position	lstBs.
20^{6}	20^{5}	20^{4}	20^{3}	20^{2}	20^{7}
$20 \times 20 \times 20 \times 20 \times 20 \times 20$	$20820 \times 20 \times 20 \times 20$	$20 \times 20 \times 20 \times 20$	$20 \times 20 \times 20$	20×20	20
$64,000,000$	$3,200,000$	160,000	8,000	400	

Such a system made it easy for the Hays astronomers to represent very bigh
numbers with great econong ln the use of aymbols. In practice, the Maya wrote their nunbers vertically (not horisantally, as we do), the unts position being the bottom one. They aleo had special symbols for the miltiples 20, 400, 8000 , etc. It is an astonishing fect that the great mathematielans of neither ancient Greece nor of anclent Rome seesed to have any inkiing of alther the concept of "zero" or that of the positional value of symbols in aumeration.

Once you have these two laeas, problems of arithmetic become mach easier than in the case of Egyptian, Greek or Roman mumpration. One more curious fact: Greenlanders use the counting system based upon radix 20 and some
"m- people wonder if this a bit of evidence of the tropical origin of the Greenlanders.

We come now to the binary scale used in electronic digital congoutars.

In the binary scale, the binary aigits, or "bita"; aso have positional
value, proceeding fran right to Iaft, as in the denary system, but, as
already mentioned, only two digits or symbols are involved in the binary
system. Oniy one of then has value, and that value progresses fiom right to left accorating to the scale $1,2,4,8,16,32,64,128, \ldots$, , that $1 s$, on
the progression of the powers of A: This can be seen in Figure wherein are
set down the bimary equivalents for the decimal numbers $0,1,2,3, \ldots .31$.

Hote the neat spi srierily manner in which the 0^{\prime} 's and $I^{\prime \prime}$ s are arranged
within columas from right to lefts single alternations in the last colvin
on the right.

 of eate of $26^{\prime} \mathrm{g}$ in the 5th colvme.

In Figure 0 are chown arily the firet 32 pernatations of the binny digite 0 and 1. And the rearon for mtopping with there 32 pernitaticose is thet I viah to imonstrete an intereating if not an matonishing fact, samely,
 piaked in deteil in the second 2eiture of this mailes, was romily the firet Inventors of the principle underiying the pure binary spaje! Wherseas Bacon
 permutations of the two alumbs of his binmry meant, componed of "a's" and

 sequance $0,1,2,3, \ldots$. But the fuctementel principle is vequestiomaly the sana, as can be sen by placing the first 24 parmitations of " 0 "n" and "2's" of the modern binary acele azongeide the sequance of "en and "b" equivalunts Bacon established for the letterr of the aiphabet as used in the

I sad now mother cursore ad grate intmpanting fect.

of two thinge through ifive piaces, nobody had yet conceived of much a thand

 telegraphy came into ual. It is rathur agtonimbing to mote that

Becon's "code" of permatation of two different sigge teken in sets of five (of waich he used conly 24 out of the posatble total of 32 permatations) is now actualiy employed in its entirety the worid over in practical electrical printing telegraph aystemei In the latter, however, the parmutations, although the asme thoge used in Bacon"e "code", are assigned alphabetic equivalents different frem those Bacon had agsigned them. For instence, in Eacon's systren, the firet permatation, saaaa, represented A; maeb, the next permutation, rapresented B, and no $0 n$, in a neat, onierly sequence, as seen in Figure 00. Iut in a practical system of electric printing telegraphy the assignment of characters and functions to the qucceabive permutations was atatated by tro factorw: (1), econcug in the use of electreical anergy and (2), reduction to a minimum of wear and tear on the machanical mparatus. We cons now to a considaration of the firgt of these factors, viz., econory in the use of electrical energy, and in auch conalderation we mall take a good look at the "code" used for modean printing telegraphy.

Cas of the most ridely uped systems of printing telegraphy syetrang is that in which there is for each character a "staxt" impulse at the beginning of the set of five algnais for a character, and a "stop" impula at the and
of the act. Fhis systen is commonly referred to an the "5-molt code, sterter atop" printing telegraph syatem. In thin mystern, there is, as in Bacon's aystem, a "code" based upon the pexrutations of two thinge taken in gets of five; in this case the tro things are "current" and "no murrent," or "positive curreat" and "negative cursent." Thous, if we use "f" and "." as symbols to represent the tro elactricel mtatom involved, Bacon's amasa a coula be regresented as ffff; B could be repserented $f f f t$, and so on. But in printing telegraph systems the sasignment of the permatations of "f's" and "-18" to reprement the characterfe to be tranmaitted are made accoxding to a scheme which taikes into comssderaticon monething other then a deaire to make the
 tematic patitarn of Bacon's biliterai alphabet. Thus, if "f" repsesents "curreent" and "*" represemts "no current," it is obvious that the greatest efficiency and aconcray in the use of olectrical energy and the leaut vear and teare on mechanical parts rould be obtained by assigning the perzatations in accordance with the noxmal freguapeies of Iettery and pumetuation atgns. And, as for the second of the two factorg mantioned above, it is obvious that here
again such assigments would result in the least monnt of wear and tear on mechanical or moving parts. Thus, the letter E is aasigned the permutation
 each of these permutations there is but one instant in the cycle of five time periods when current is flowing, A "code" of this type was designed many yeary ago by a French inventor and engineer named Bautot, and the "code" Is now generally referred to as the Baudot Code. The unit expressing speed in electric signailing, the bsud, in nomed in ins honor.

In Fig. 00 the Beudot Code is presented in the foxm of a picture of a plece of perforated tape for a controlling a printing telegraph aystem. Bach charwater is represented by one or moxe "character holes" which may be punched in five different poaitions of "leveis" across the tape, i.e., transversely to its length. Since in each of these five levels a bole may be present or absent, there are 2^{5} or 32 possible perumatations, of wish 26 are used to represent characters; and 5 are used to control certain function of the printing mechanting, vize, "space," "carriage return," "hine faed", "figureshift", and "lettar-shift", leaving one parmatation (no nole in any level)
which is the "blank" or "idising" Fipmai. 2no "Lettar-ithift" and "eigurashift" perrartations permat doubling the number of chaxactera that can be represented. When the " 2 ottom-shift" precodes a ouction of tepe, the yunobe pernutations that follow are intergseted an alphabetic eburwatere; if "tigure-
 or apecial charactars.

Coratlil serutiny of Fig, 3 will confixm what has bew ald gout the ssaimenent of proch-porzutations on the basis of statioticel conaiderntions, for purpone of econcsy and efficiency in the wee of alecric pown and wans

 freguentiy uged letters (or functions) are represented by permitetion hoving the mont holes. Thus, "ilse feed," "Carriege roturn," "space," and the lattery

 - nole or a blank (or nomhole) one orten may "e hole (or perforation) in the let (or the 2nd, 3xd, 4th, or 5th 1 evel"), or "e blank in the ... level."

